
EE SUMMER CAMP 2006 1

FPGA implementation of floating point processor
for Programmable calculator

Saurabh Gupta and Vikas Kumar Sharma
Department of Electrical Engineering, IIT Kanpur

Abstract— Floating Point Unit (FPU) is an essential part of
most of the processors. For handling computations of numbers
of high order it is nessesary to operate on floating point numbers.
Exception handling is essential and the FPU designed gives
appropriate exception signals that can be used by any processor.

Further, in this project a processor for a programmable
calculator is designed that does arithmetic operations on floating
point numbers.

I. PROBLEM STATEMENT

Design and implementation of a FPU (Floating Point Unit)
which operates on IEEE 754 represented numbers on FPGA.
Also, designing a processor that uses this FPU to make a
programmable calculator.

II. D ESIGN ISSUES

A. FPU

Floating point numbers can handle much larger numbers
than the fixed point and for scientific calculations the order
of numbers is typically high. Hence, floating point arithmetic
is chosen for the design. Though double precision floating
point representation gives better accuracy, the hardware re-
quirements for FPGA implementation are doubled if the unit
operates with double precision. Hence, single precision best
fits to the requirements.

B. Processor

Then the issue of deciding the ISA (Instruction Set Archi-
tecture) is faced. 16-bit instructions, in which first 5 bits are for
operation-code, next 3 bits are destination address followed by
6 bits that contain addresses of two operand addresses (each
of three bits), were accepted for design.

Implementation of move operation requires inputting a 32
bit sequence. This was resolved by reading three instructions
at a time and if move operation is detected, then the second
and the third instructions will be merged to form a 32-bit
sequence. This methodology reduces the size of instruction
by 32 bits which is otherwise must be used to input a 32 bit
sequence.

The program that the user writes in the Instruction Memory
of the system has a requirement that after all the instructions,
one ending instruction should be written containing all zeros.
Also the destination of the last result that comes out of ALU
should be written back in last register (address = 3’b111).

Fig. 1. Instruction Set Encoding Scheme

III. D ESIGN METHODOLOGY

For representing the floating point numbers, IEEE 754
standard was selected and the FPU is designed for the same.

Studying some famous algorithms both for signed and
unsigned arithmetic operations, it was found that for addi-
tion and subtraction the signed algorithms are best. But, for
multiplication and division unsigned algorithms are used. As
the arithmetic is to be done on floating point numbers, so we
handled mantissa and exponent separately. Also in division
for better accuracy the dividend was extended to double of its
length and the answer is rounded off to nearest integer.

The next step in the design flow was to write the hardware
description for the Floating point unit. These were simulated
and verified. Then for the processor units simulation and
verification of hardware description was done.

Implementation of verified codes on FPGA for Floating
point unit as well as for the whole processor was the last
step.

IV. FLOATING POINT ARITHMETIC

A. IEEE 754 standard

The IEEE 754 standard [1] for the representation of floating
point numbers is followed. In this standard the first bit is sign
bit (0 for positive number and 1 for negative number), next 8
bits are for exponent (with a bias of 127). It means that if expo-
nent is 8’b01111111 then the actual exponent of 2 in the rep-
resentation will be 127-127=0. Therefore this representation
also handles negative exponents without using any sign bit.
The remaining 23 bits are for storing mantissa. Actually the



EE SUMMER CAMP 2006 2

Fig. 2. Block Diagram of Floating Point Addition-Subtraction

mantissa is of 24 bits and the first bit is always ’1’ in the repre-
sentation. Hence, there is no need to represent this implicit 1 in
the mantissa and the standard represents 24 bit mantissa in 23
bits. For example1 10000001 10000101011001011101001 =
(−1) ∗ (1.10000101011001011101001) ∗ (210000001)

B. Addition and Subtraction

Floating point addition involves much more hardware than
an integer addition as for adding two numbers we need to
equate the exponents of the two numbers and this involves
shifting of mantissa. If we shift the number by simple shifter
many clock cycles are wasted. Therefore we have used barrel
shifter that shifts any sequence in combinatorial way in just
one cycle. The next step is signed addition of mantissa. If
the number is negative, the 2’s complement of the mantissa
is fed into the signed-adder. Now for the further operations
the result has to be again in IEEE 754 format, it means the
24 bit mantissa must have 1 as its MSB. For this we again
used a block called Count Leading Zeros that gives the shift

Fig. 3. Block Diagram of Floating Point Multiplication and Division

needed to convert the number in IEEE 754 format. At every
shift in mantissa we take care of increment and decrement
in exponent and wherever any overflow in exponent it is
reported as exception. Using the same hardware, addition and
subtraction both are implemented, as for subtraction we just
need to alter the sign bit of the second operand. (Ref. fig.1)

C. Multiplication

The multiplication of floating point number is mainly multi-
plication of their mantissas. The two mantissas are multiplied
by Booth’s Algorithm[3]. The 48 bit multiplication result is
again converted into the IEEE format using the leading zeros
counter and the barrel shifter. Then it is rounded off to nearest
integer. The exponents of operand1 and operand2 are added
and ’bias’ is subtracted from the result. The shift due to barrel
shifter is suitably adjusted in the exponent. If any overflow is
observed then the exception is reported. (Ref. fig.2)

D. Division

The division mainly involves the division of mantissas[4]
and it is done by extending the dividend to twice of its length.
This is done for better accuracy of the result. This result is
converted into the IEEE format using the leading zeros counter
and the barrel shifter followed by rounding off to the nearest
integer. Now the exponents are subtracted and ’bias’ is added
taking care of the shift due to barrel shifter. If the exponent
overflows or becomes negative then exception is reported.
Divide by zero is reported as invalid operation. (Ref. fig.2)

If any of the operand is infinity then the invalid operation
is reported as exception.



EE SUMMER CAMP 2006 3

Fig. 4. Block Diagram of the Processor

V. PROCESSORDESIGN

1) Instruction fetch unit at reset assigns the program
counter to zero, reads the instruction from the program
memory and fetches that to instruction decoder unit.
Processor gets next increased counter value also.

2) Instruction decoder gets 16 bit instruction and gives
operand addresses, destination address and ALU unit
code. Those addresses are passed to register file and
ALU unit code is given to the execution unit.

3) Execution unit takes operand values from register file
and gives the result to Write Back unit.

4) Write Back unit takes the result form execution unit
and at move command it takes data vale from the
instruction memory. This value is passed to register file
and stored to the given destination address.

For other processor units (IF, ID, EX and WB), we used
trigger and finish pulses to activate the subsequent units.
Finish of one unit triggers the start of appropriate subsequent
unit. This process continues till all the instructions are
executed and the result is written back to the final register.

VI. FPGA IMPLEMENTATION

For implementing the FPU on FPGA verified Hardware
description were synthesized. The syntesization results are
tabulated in TABLE I and TABLE II. TABLE I contains
results for FPU and TABLE II contains results for processor
units. Clock cycles used by complete processor are not
reported as it depends on the program (instruction set) given
by the user.

TABLE I

RESULTS OFFPGA IMPLEMENTATION OF FPU

Logic elements Memory Bits Clock cycles

used used used

Addition-Subtraction 6 0 4

Multiplication 1202 8896 33

Division 685 0 54

Complete Processor 5330 21568 –

TABLE II

RESULTS OFFPGA IMPLEMENTATION OF PROCESSORUNITS

Clock cycles used

(simulation result)

Instruction Fetch Unit 1

Instruction Decode Unit 2

Register File Read 1

Write Back Unit 2

Register File Write 1

VII. F URTHER EXTENTIONS

1) Further by the same algorithms implementing
arithmetic of double precision floating point numbers.

2) Jump and branch operations can be included in our
processor, by which a lot of clock cycles can be saved.

3) Square Root calculation is an generally used operation
so, it can also be included in FPU.

4) In multiplication the barrel shifter used has same
structure as the shifter in other units. But, algorithm
can work with an optimized shifter. This optimization
can be easily included.

ACKNOWLEDGMENT

The authors would like to thank Veeramani V. and Abhinav
Agarwal for their valuable support and fruitful discussions.

REFERENCES

[1] Institute of Electrical and Electronics Engineers, ”IEEE Standard for
Binary Floating-Point Arithmetic”, ANSI/IEEE Standard 754-1985,
August 1985

[2] http://docs.sun.com/source/806-3568/ncggoldberg.html
[3] http://en.wikipedia.org/wiki/Booth’s multiplication algorithm
[4] http://www.cs.wisc.edu/ smoler/x86text/lect.notes/arith.flpt.html


